
The doAnything Smart Contract.

Timon Riechsteiner, Supervisor: Arthur Gervais

ETH Zürich, Switzerland

Abstract. This paper introduces the doAnything contract, a versatile
framework for efficiently interacting with DeFi smart contracts in the
Ethereum network. The doAnything contract serves as a unified interface
for executing diverse DeFi operations, eliminating the need for multi-
ple contract deployments and significantly reducing gas costs in many
scenarios. This paper demonstrates its effectiveness using several manu-
ally implemented comparisons, equally divided between actual arbitrage
trading strategies, previously observed exploits, real-world MEV extrac-
tion transactions and commonly used DeFi smart contract functions. By
leveraging the Huff compiler, implementing contract-specific optimization
strategies, and using a custom encoding scheme for passing data to our
smart contract, the doAnything contract achieves substantial gas savings
and minimal overhead across the board. With these optimizations the
contract can outperform dedicated Solidity contracts. The performance
incraease is both in terms of deployment costs, where the doAnything
contract only uses 29.9 % of the gas that the Solidity implementation
uses, and in terms of operation cost, with only requiring an average of
82 % gas used for each smart contract call, compared to the Solidity
contract. The doAnything contract performs equally efficient as two smart
contracts used by actual MEV extraction bots, and is able to execute
many exploits that were observed on-chain, either beating the equivalent
Solidity implementations, or only incurring minimal overhead. Further,
the doAnything contract allows for layering arbitrarily many contract
functions with control leaks together, and it supports returning data to
static calls.

Keywords: Cryptocurrency · Ethereum · EVM · Smart Contracts.

1 Introduction

Smart contracts are programs that run in decentralized blockchain networks like
Ethereum. Therefore they are crucial to provide functionality to the blockchains
users. They enable decentralized exchanges [29], decentralized autonomous organ-
isations [18], lending protocols [2] and many other financial- and non financial
functionalities that benefit from the advantages that decentralized networks
provide.

As the resources in such a network are not infinite, the networks implement
mechanisms to allocate resources and incentivize participation. In the Ethereum
network, transaction fees, also known as gas fees [11], are one of the main

2 Timon Riechsteiner, Supervisor: Arthur Gervais

mechanisms used. The amount of fees heavily depends of the efficiency of the
underlying smart contracts that are used.

As of today1, an average of 107’000 million gas is used every day over the
past six months [15]. With the current gas price [14], this is approximately half
a million US-dollars spent solely on fees, every day. Therefore, it is crucial for
smart contract developers and users alike, to use and develop smart contracts
that are as efficient as possible, as only minor improvements can potentially save
thousands of dollars.

In this paper a new smart contract is proposed, the doAnything contract, that
functions as a framework for gas efficient interactions with other smart contracts.
We outline its implementation, and provide various benchmarks to showcase its
efficiency, using detailed, real-world scenarios.

It minimises gas usage in two dimensions. The first dimension is the number
of smart contracts that need to be deployed. When a developer, user or advanced
trader wants to perform a new set of interactions with smart contracts, a new
contract usually needs to be deployed. Using our contract, many such deployments
of new contracts become redundant. For example, we are able to show that the
doAnything contract only incurs about one third of the deployment cots compared
to specific Solidity implementations of concrete trading strategies.

Secondly, smart contracts that heavily depend on interactions with other
smart contracts can benefit by a reduced gas cost on a per-interaction basis
when using the doAnything contract. Our findings show that the contract is
able to outperform dedicated Solidity smart-contracts in terms of gas usage by a
reduction that varies between 10% and 25% per call, depending on the scenario.

2 Background

2.1 Smart Contracts and Ethereum Virtual Machine

Smart contracts are self-executing programs that run on blockchain platforms,
with Ethereum being one of the most prominent [31]. These contracts are executed
in a specialized runtime environment called the Ethereum Virtual Machine (EVM).
The EVM is a stack-based, big-endian virtual machine designed to execute smart
contract bytecode [19].

These smart contracts can be used to provide various functionality. Common
examples include decentralized exchanges like Uniswap to exchange tokens [29],
non-custodial liquidity protocols like Aave [2] that enables users to supply tokens,
borrow tokens, and liquidate unhealthy positions, decentralized autonomous or-
ganisations (DAOs) [18] that enable users to make and participate in democratized
and transparent organisations, among many others.

2.2 Gas and Gas Price

The EVM is running on many different decentralized nodes and provides comput-
ing power to its users [12]. As there is a physical limit to this shared computing

1 14. September 2024

The doAnything Contract 3

power, dictated by the amount of nodes and their own computing power, there
needs to be some method to distribute the networks resources. Further, running
a node needs to be incentivized, as it incurs cost for example for electricity and
hardware [3].

Gas is a concept fundamental to the EVM used for incentives and resource
allocation. All instruction given to the EVM, for example multiplying two numbers,
or loading or storing data, have some predefined constant amount of gas they use.
Certain instructions, like invoking other smart contracts, introduce additional,
dynamic gas cost, which depend on the concrete execution [11].

The amount of gas each instruction uses was defined in the Ethereum yellow
paper, and does not depend directly on the actual underlying implementation.
However, the values were chosen such that they do correlate with how expensive
the instructions are percieved by the network [31]. For example, storing data
permanently is heavily disincetvized by incurring a high fee. This is because the
blockchain nodes will need to have the data available indefinitely, which, if a lot
of data is stored, massively increases the physical storage required to run a node.

Interacting with the blockchain, a user needs to pay for all the gas that accrues
during execution. The total fee is the gas used, multiplied by a price paid per unit
of gas [11]. This price can be specified by the user sending the transaction. The
price of gas is then paid in the token native to the Ethereum network, commonly
known as Ether. If many users send transactions at the same time, the has to
choose a subset of them to include in the current block, as the size per block is
limited [9]. It can be observed, that nodes commonly include transactions that
pay the highest gas fees to maximize profit. Thus, the problem of allocating the
networks resources is solved by essentially auctioning the resources off to the
highest bidders. At the same time, the nodes executing the transactions are able
to receive part of the gas fees as payment for their participation.

2.3 Smart Contract Languages

The choice of programming language for smart contract development significantly
impacts contract gas efficiency, readability, and security. Several languages have
emerged to cater to different developer preferences and use cases. In this section,
four key languages are outlined: Solidity, Yul, Assembly and Huff. Another
prominent language is Vyper. We did not include Vyper in this paper, as due to
its design principles, it does not provide low-level access to the EVM [30], which
is needed to develop the doAnything contract.

Solidity First introduced 2014 and sponsored by the Ethereum Foundation [26],
Solidity is the most widely used language for Ethereum smart contract develop-
ment [7]. It is a statically-typed, contract-oriented language, which was inspired
by C++, Python and JavaScript [13]. Solidity offers high-level abstractions and
extensive features, making it accessible to developers familiar with object-oriented
programming. The abstractions improve readability, which is crucial to write
clear and bug-free code. However, high-level abstractions can sometimes lead to

4 Timon Riechsteiner, Supervisor: Arthur Gervais

inefficiencies in gas usage and make it challenging for the compiler to optimise.
The Solidity compiler turns the code either directly into EVM bytecode, or it
can first translated it into Yul, which is then assembled into bytecode [25]. Yul,
described in more detail below, can also be used as inline assembly in Solidity
[24], giving the developer a way to interact more directly with the EVM.

Yul Yul is an intermediate language designed for the Ethereum ecosystem [10]. It
can be compiled to EVM bytecode and is also used as an intermediate language
in the Solidity compiler. Yul provides some level of abstraction, while still offering
fine-grained control over EVM operations. This makes it useful for implementing
complex algorithms and optimisations that are difficult to express in high-level
languages like Solidity or Vyper. Further, it allows the developer to directly
control the EVM, making it suitable for low-level manipulations.

Assembly EVM Assembly language provides direct access to EVM opcodes,
offering the highest level of control over contract execution [4]. It allows for
extreme gas optimisation and implementation of complex EVM interactions.
However, Assembly code is challenging to write, read, and maintain, increasing
the risk of errors and vulnerabilities. It is typically used for specific optimisations
within contracts primarily written in higher-level languages.

Huff Huff is a low-level programming language designed specifically for writing
highly optimised EVM contracts [21]. It provides a balance between the low-level
control of Assembly and the convenience of some more high-level functionality.
Huff allows for macros and other abstractions [20], enabling developers to write
reusable and gas-efficient code. However, like Assembly, Huff requires a deep un-
derstanding of EVM internals and careful attention to detail to avoid introducing
vulnerabilities.

3 Design and Implementation

This section provides a comprehensive overview of the doAnything contract’s
foundational concepts, design principles, and implementation details, illuminating
how its flexibility and gas efficiency is achieved.

3.1 Foundational Concepts

Inter-Contract Interactions The core functionality allowing smart contracts
inside the EVM to interact with one another is provided by function calls and
returns. A function call takes an address of the contract that deployed the
function, together with data that will be supplied to the function [23]. This
data usually starts with four bytes of the function name hashed together with
the argument types, which is called the signature [5]. This de facto standard
allows for the smart contract that is called to determine which logic the caller

The doAnything Contract 5

wants to invoke. If the function takes arguments, those are appended to the
signature. A function call starts a new call-context. After calling, the called
contract executes its logic. The end of such a call-context is marked by a return,
which exits the context. The return instruction can also be used to pass data
back to the caller [23]. Using only these two basic operations of the EVM, smart
contracts can already make complex interactions in the Ethereum smart-contract
space. For example, the first call exchanges token A to token B, while the second
call exchanges token B to token C, and the third call deposits the tokens C as
liquidity in another exchange.

Operation Slots The main task of the doAnything contract is to execute any
sequence of call and return operations. To achieve this, the operations are first
encoded off-chain, using a custom operation encoding. The choice of operations
can be done either using a fuzzer, manually selecting operations, or using other
software to generate the desired operation sequence. An encoded call or return
operation is what we call a slot. Each slot will contain meta-data about the
operation, together with the data required by the specific operation. A call slot
for example encodes the address that will receive the function call, the signature
used to identify the function, and the arguments supplied to the function.

The chosen operations are then passed to the encoder, which turns them
into a sequence of bytes. Those bytes can be decoded back into operations
by the doAnything contract, which then executes them. Further, the last slot
contains data that is used to finalise the execution. The doAnything contract can
check if the operation sequence generated the desired amount of native tokens.
Additionally, it can send a bribe to the coinbase, the address of the current block
builder. This is done to further incentivize the inclusion of a transaction.

3.2 Slot Encoding

Header At the beginning of each slot (except the last slot, sn) is a header. A
header has two components. A flag field and a length field. The flag field is one
byte long, and contains metadata about the encoded operation. For example the
first flag bit is set to one if the slot is a CALL slot, otherwise it is set zero. See
Table 1 for a complete list of flags used. This allows the contract to efficiently
process each slot. The length field contains the the number of bytes of data that
are contained in the current slot, encoded as an unsigned seven byte number.
The length is used to both determine the beginning of the next slot, and to infer
the size of the call- or return-data used for the operation.

CALL-Slot A CALL-slot is used for a call instruction[23]. The primary com-
ponents (cf. Figure 2) of the CALL-slot encoding are the target address of the
smart-contract that receives the call (target), the amount of native token sent to
the target address (value), and the data passed to the called contract (calldata).
There are two optimisations applied. First, if the value is zero, it is wasteful to
include 32 bytes of zero to represent that. Thus, the value chunk is only stored

6 Timon Riechsteiner, Supervisor: Arthur Gervais

Name Set to 1 if

IS CALL 1 for CALL slots.

HAS CALLBACK 1 if additional logic is executed inside a callback.

REQUIRES STORE 1 if the slot needs to be stored in transient storage.

HAS DATA 1 if the slot has any call or return data.

HAS VALUE 1 if the CALL sends Ether

IS STATIC 1 if the RETURN slot is used inside a static call.

Table 1: Flags that are stored in the header.

if non-zero. Otherwise, the corresponding flag indicates that there is no value
chunk. The second optimisation is based on the fact that calldata usually contains
4 + n · 32 bytes, where n approximately correlates with the number of arguments
to the function. This is because the first four bytes contain the function signature,
and, since the EVM uses 32 byte words, the arguments are encoded in 32 byte
packets (chunks). Therefore, the header size was chosen such that the signature
can be stored in the first chunk, and the remaining n · 32 bytes fit neatly in the
remaining chunks of a slot.

Fig. 1: The encoding of CALL and RETURN slots. The two topmost rows both depict
CALL slots, where the upper row includes a value chunk and the lower row does
not. The two bottom rows depict RETURN slots, where the upper row includes the
signature used for a static return, and the lower one does not.

RETURN-Slot A RETURN-slot (cf. Figure 1) encodes a return instruction [23].
It can be used to return data to the caller, but it is not a must. The slots header
encodes that it is a RETURN-slot and if it contains any data. If it contains data, it
is appended after the header.

The doAnything Contract 7

In the edge case where data is returned to a static-call [23] instead of a regular
call, the RETURN-slot additionally contains a function signature, which is four
bytes. The signature is put between the header and the returndata. For a more
comprehensive explanation of the static-return mechanism refer to Subsection 3.3.

FINALISE-Slot The FINALISE-slot represents the most straightforward slot
type. It stores the value MIN TRANSFER, the minimum amount the operations
are expected to generate, and BRIBE, the amount of tokens sent to the coinbase.
Both MIN TRANSFER and BRIBE represent quantities of native tokens. In the cases
examined, these values did not exceed 2128 − 1. This lead to the decision to
encode MIN TRANSFER and BRIBE into a single slot, where MIN TRANSFER occupies
the upper 128 bits of the chunk and BRIBE the lower 128 bits.

3.3 Execution Contexts and Return to Static Call

There are two types of execution contexts, external and internal. Which context
the doAnything contract is running in depends on the chosen operations.

Internal Execution Context The doAnything contract, lets call it A in this
section, always starts in an internal execution context when it is first invoked. It
then proceeds to execute the encoded operations in this context. Let us consider
the case where the contract calls another smart contract, which we will call B.
This smart contract B can itself call an arbitrary contract C when called. If the
contract C is not our doAnything contract, i.e. C ̸= A, we remain in the internal
execution context.

External Execution Context If the smart contract B calls our contract A
again instead, it enters an external execution context. Any time the doAnything
contract is called by another contract, instead of the initial call by the user, it
will be in the external context.

For illustration purposes, let Ai be the i-th execution context, and assume
that the sequence of invoked contracts is A1 → B → A2, where A1 is internal and
A2 external. The differentiation between internal and external is crucial to the
execution of the doAnything contract, because data that is specific to the first,
internal context A1, like calldata and memory, is not accessible in the second
invocation A2 [22]. Thus we need to have additional logic to ensure that data
supplied to A1 can be accessed from the external execution context A2. This logic
will copy the data from the calldata to transient storage, where A2 can access it.
After a external execution context has read all slots from transient storage and
executed them, it is terminated by a return slot. In our example A2 returns to
B, and after the contract B returns back to A1, we are in the top-level, internal
execution context again.

Further, our contract allows for arbitrary layering of external execution
contexts, i.e. A1 → B → A2 → C → A3 . . . Z → Ak would be a possible

8 Timon Riechsteiner, Supervisor: Arthur Gervais

combination of contract executions. Each Ai for i > 1 is an external execution
context. See Figure 2 for a graphical representation of a internal execution context
and one layer of external execution context. In fuzzing literature, a contract
function (method) that calls back to its caller is sometimes called a method with
control leaks, as the other contract B ”leaks” its control back to A during its
execution. Thus all called methods with control leaks will lead to an external
execution context.

Return to Static Call The EVM supports a special type of call instruction, a
static call [23]. A static call is like a regular call, except that it does not allow
the state of the EVM to be changed during the execution of said call. A static
call provides the benefit that for example no tokens can be transferred. Thus
they enable someone using a static call to have more security guarantees when
invoking other contracts. As they cannot modify state, their only functionality is
to retrieve information about the current state.

Such static calls pose a difficult problem to the doAnything contract. Lets
consider the invocation sequence X →i Ai → B →static Ai+1. As in the previous
section, A is the doAnything contract, while X and B are not. The sequence
differs to the previous one in that the contract B uses a static call instead of a
”regular” call. Note that X can either be an externally owned account (EOA) or
a contract.

Lets assume that our contract Ai is in state σ just before it calls B. In this
state, the contract is already prepared to return to the static call. It then calls
B, which in turn calls back and starts context Ai+1. In context Ai+1, we return
the data, and exit the context. Then B finishes its execution, and returns to Ai.
As a static call does not allow state changes, our contract will still be in state σ,
like before it called B. Thus Ai is unable to tell if it has already called B or not.

There are two parts to our solution. Firstly, the RETURN slot used in context
Ai+1 has the IS STATIC flag set. When this flag is read as true, our contract
suppresses all state changes while executing the slot. The second part is that
the function signature used by the call →static is stored in the return slot. If our
contract is in state σ and sees the signature corresponding to the call →static,
it concludes that it is inside the static call. If our contract is in state σ, but
the signature it sees corresponds to the call →i, it concludes that it has already
returned data to the static call from B. In that case, the contract applies the
necessary changes to the state that it was unable to do inside the static call, and
continues execution as usual.

This solution requires that the call →i uses a different signature than the call
→static. The signature is equal only if both B and X call into the contexts Ai

and Ai+1 using the same function, i.e. both calls target a function of the same
name and with the same argument types, which should rarely happen in practice.

3.4 Execution Contexts and Flow

The execution flow can be broken into four stages. See Figure 2 for a graphical
representation of the execution flow.

The doAnything Contract 9

Fig. 2: The doAnything contract execution flow. In the first stage, the operator
supplies the encoded slots to the contract. The three other stages happen inside
the contract, executed in the following order: The preprocess stage, the main
execution and the finalise stage.

Initiation The first stage is initiating the execution, which is done outside
the contract. It comprises the operator selecting the desired operations, and
encoding them into slots, using the format specified in the previous section. Our
approach uses scripts written in Golang, but any software for manipulating bits
can be used. The last step of the first stage is to call the contract and pass the
encoded operations as an argument to the call. This contract call is no different
to invoking any other smart-contract function. The operator interacting with
the doAnything contract signs and send a transaction containing the data to the
Ethereum network (or other EVM-like chains).

Preprocess The second stage is concerned with preprocessing the supplied slots.
After having received the initiating transaction, the contract iterates over each
provided slot. It checks if the slot is required in an external execution context,
which is indicated by the REQUIRES STORE flag. If this is the case, the contract
stores the slot in transient storage to make it available in the external context.

Main Loop The main execution stage is where the core functionality of the
contract is located. This stage operates in the two execution contexts described
in Subsection 3.3.

10 Timon Riechsteiner, Supervisor: Arthur Gervais

First, the contract checks which context it needs to execute in. This check
is done by looking at the sender of the contract call. If the owner called the
contract, it must execute in the internal context. It can also be sure that it is
executing it for the first time, as the owner can only execute one sequence of
operations at a time. If the invocation originated from another address, we are
inside a callback. Let us first cover the case where we are inside the call from the
contract operator.

The first time the main stage is reached, it starts an execution loop that
sequentially processes each slot. As returns are only needed to supply data when
inside callbacks, the main-loop only issues calls to other contracts. The data
needed for executing a CALL-slot is read from the operators supplied calldata.
The contract prepares the values needed for the underlying call instruction on
the stack and stores the calldata that will be passed to the called function in
memory. The call instruction receives the pointer to this data together with the
data length. Additionally, the contract stores a flag that is set to true if the call
will require operations to be executed in an external execution context. After all
flags are set and the values are stored on the stack, the call is executed.

If the called function does not call back, the main loop continues its execution
with the next slot, once the previous call is completed. If the called function
does call back, it ends up in our contract again. First, it reads out the flag set
in storage, which informs it if it needs to execute additional operations in the
external, call-back context. If this is not the case, it simply returns, and the
external contract continues its execution, until it returns to the main loop.

If it does need to execute additional function calls, or return specific data,
it goes into an external-execution loop. This loop is very similar to the main-
execution loop. With the main difference that it reads the data needed to execute
the operations from transient storage instead of calldata, as the calldata supplied
to the top level context A1 is not available in this external execution context.

As previously described, there can be an arbitrary layering of external-
execution contexts. In each of these contexts the doAnything contract stores
which slots already have been processed. This is done to ensure that all the
context are synchronised, and no slot is executed twice. After having executed all
the necessary calls in a external callback context, the external loop is terminated
with a return. Once the contract that started the external context has finished, it
returns back to either another external context inside the doAnything contract,
or it returns to the main loop in the internal context.

Finalise When the main execution loop has executed all slots, it exits the loop
and the finalisation stage starts. The finalisation stage includes three steps. First,
it unwraps any remaining Wrapped Ether (WETH) that might have accrued
during the execution. Second, it verifies that the final balance meets the minimum
specified in the FINALISE slot. If specified, it also sends a bribe to the coinbase.
After all these operations have finished successfully, the doAnything contract
has finished executing the supplied operation sequence. In this case, it halts the
execution, and is ready for further operation sequences.

The doAnything Contract 11

3.5 Gas Optimisation Strategies

The doAnything contract implements several sophisticated strategies to minimise
gas consumption, which we will detail in this section.

Efficient Operation Encoding and Flags As described in Section 3.2, the data
structure is compact and only stores data essential to the call. Much information
is made available by individual flag bits. This minimises the amount of data that
needs to be processed resulting in reduced gas usage.

Efficient Storage Usage As describe in Section 3.3, some data needs to be
stored for it to be available in the external execution context. Storing and loading
data is notoriously gas intensive. Thus, using efficient operation encoding reduces
the number of storage accesses for both loading and storing. Further, using
transient storage [27] instead of permanent storage also drastically reduces the
cost. Accessing permanent storage for the first time inside a transaction costs
abound 2000 gas [31, 23] and then 200, accessing transient storage costs always
100 gas, and a calldata load only 3 gas. Our implementation uses the cheapest
storage available in all scenarios.

Memory Usage Optimisation Memory utilisation in the EVM incurs gas
costs similarly to storage. The gas cost for memory operations, like for permanent
storage, consists of a constant and a dynamic part. The dynamic part only accrues
the first time certain memory or storage is accessed, while the constant part
needs to be payed on each store or load. The crucial difference is that cold storage
accesses always have the same dynamic cost, independent of the storage location.
In memory accesses, the cost per accessed unit of memory increases with the size
of the used memory. Let a represent the highest accessed memory location as
a 256-bit word pointer. The total expansion cost of memory [31] (only accrued
once inside each execution context) is determined by the following formula:

cost(a) =

⌊
a2

512

⌋
+ a · 3

Note the quadratic growth with respect to a. The doAnything contract only uses
512 bytes of memory, plus the additional bytes that are required to pass return
or call-data. This approach minimises memory expansion costs.

4 Evaluation

To assess the effectiveness and performance of the doAnything contract, a com-
prehensive evaluation focusing on gas usage was conducted. We evaluated the
contract by using it to execute different DeFi operations, and compared it with
(i) a naive implementation in Solidity without the optimisations mentioned in

12 Timon Riechsteiner, Supervisor: Arthur Gervais

the Section 3.5, (ii) the gas consumption of the underlying function calls, and
(iii) dedicated implementations in Solidity. The tests can be broken down into
two categories. The first category consist of performing individual function calls
of commonly used DeFi functions. These benchmarks serve to analyse the perfor-
mance of individual operations and see the overhead they introduce. Our second
test set consists of replicating transactions that were be observed on-chain, to
get a sense of the real-world performance of the doAnything contract.

4.1 Individual Function Calls

Fig. 3: Gas usage across different Uniswap V2 and WETH functions. Both
swapExactTokensForTokens and swapExactTokensForETH swap over three to-
kens. For readability the bars were cut off at 230’000 gas.

In this section the doAnything contract is benchmarked using individual
contract calls. The focus lies on functions from two widely-used Ethereum smart
contracts: Wrapped Ether (WETH)[6], which implements the ERC20 standard
[16] used for most tokens (”crypto currencies”) in the Ethereum network, and
Uniswap [8], which is a decentralized exchange that allows users exchange tokens
implementing this standard. The gas used by the doAnything contract is compared
to the gas used by the underlying function call and to the naive doAnything
implementation in Solidity. The gas used in the underlying call is all the gas
used by mentioned smart contracts from after they have been called, up to the
point when they return. Thus this underlying gas usage is independent of the
doAnything contract and cannot be avoided or improved on.

The doAnything Contract 13

Our analysis reveals a small overhead compared to the underlying function
call. Further, the gas usage is halved compared to the naive Solidity imple-
mentation. See (Figure 3) for a plot detailing the results. The gas savings are
particularly notable for complex operations like swapExactTokensForETH, where
doAnything uses only 179,510 gas compared to 436,044 gas for the naive Solidity
implementation - a reduction of about 59%.

4.2 Gas Usage for Sequential Function Calls

As described earlier, gas fees can be different, for example if an address or a
storage location has been used previously or not. Thus the gas fees differ for
sequential calls of the same function. To get an understanding of the gas usage
in sequential calls, the doAnything contracts performance was also tested for an
increasing number of calls to Uniswaps swapExactTokensForTokens. The results
are shown in Figure 4. In this test, the underlying cold function call requires
161’722 gas versus 54’190 gas for a warm function call. If we let n be the number
of function calls, where n ≥ 0, we can write down a function describing the
underlying gas usage:

(n− 1) · 54′190 + 161722 = n · 54′190 + 107′532

Approximating the gas used by the Huff implementation using a linear least
squares fit, the gas usage is:

n · 56′239 + 123′573

Subtracting the gas used by the underlying function calls from the gas used by
the doAnything contract, we can approximate the overhead to be:

n · 2′049 + 16′041

Further, the plot shows that both implementations experience linear growth in
gas usage as the number of calls increases. However, the Huff version consistently
remains at least one order of magnitude cheaper than the Solidity version. We
also show that even for increasing number of function calls, the incurred overhead
compared to just the underlying function gas usage is relatively small.

4.3 Gas Usage for DeFi Attacks

Further benchmarks of real-world scenarios were done by re-executing ten past
DeFi attacks. These attacks were observed on-chain in or after January 2024.
DeFi attacks are notorious for consuming more gas than average blockchain
transactions due to their complex, often nested call structures. The attacks
were taken from the dataset called DeFiHackLabs by SunWeb3Sec [28]. Some
exploits were excluded as they did not target the Ethereum network. Further,
some modification were done to the exploits to ensure that the execution was
similar to what is achievable with the doAnything contract, and to ensure that
the comparison did not unfairly favour our implementation. The modifications
are as follows

14 Timon Riechsteiner, Supervisor: Arthur Gervais

Fig. 4: A plot of number of swapExactTokensForTokens calls versus the gas used.
All swaps involve three tokens, which remained the same for each function call.
The gas used is cut off at 2’000’000 gas for readability.

1. Any logs the exploits emitted for logging values to the console were removed.

2. Setup actions, like giving the attack contract funds, were not included in the
measurement.

3. Calculating a signature or other complex on-chain calculations were moved
outside the exploit logic and pre-calculated, as the doAnything contract also
requires those calculations to be done outside the transaction.

4. In general, to ensure fairness, all changes done to the exploits were only allowed
to either not affect, or lower the gas used by the Solidity implementations.

The analysis of past DeFi attacks (Figure 5) shows that for all attacks the
doAnything contract uses significantly less gas than the naive Solidity imple-
mentation. The Barley Finance attack shows the most dramatic improvement,
with the doAnything contract using only about 23% of the gas used by the naive
contract. Even the smallest difference, observed in the DAO Soul Mate attack,
still shows a notable improvement of about 9% in gas usage. In part of the test
cases, the hard-coded exploit in solidity used the least gas. This is to be expected,
as the compiler can optimise it, and no overhead is incurred to support general
functionality like the doAnything contract provides. Despite this, the doAnything
contract on average beats the dedicated implementations. It uses on average 3%
less gas, with a standard deviation of 9%.

These results underscore the potential of the doAnything implementation to
reduce gas costs even for highly complex transactions like those found in DeFi
attacks. The ability to beat dedicated solidity smart contracts suggests that

The doAnything Contract 15

Fig. 5: Relative gas usage when comparing four DeFi exploits. For each test case,
100% is set to the implementation using the most gas, which was the doAnything
implementation in solidity in all cases.

adopting the doAnything implementation can lead to cost reductions for users
engaging in complex DeFi operations.

Note that these attacks were only replicated for research purposes, and that
the doAnything contract is not intended to be used for exploits. The tests were
done in test networks, using the smart contract development tool-chain Foundry
[17].

4.4 doAnything vs. Dedicated Contracts

To further evaluate the efficiency of our doAnything contract, a comparative
analysis against dedicated contracts designed for specific trading strategies was
conducted. This comparison aimed to determine which approach is more gas-
efficient: a single, versatile contract like the doAnything contract, capable of
executing multiple types of trading actions. Or multiple dedicated contracts, each
optimised for a specific trading strategy. For this two potential trading strategies
were implemented in solidity. The first scenario is an arbitrage smart contract.
It allows its user to specify a list of tokens of arbitrary length, together with a
list containing the amount of token to exchange, and a list which determines
which of the three predefined exchanges it should use. The contract then goes
trough these lists, first approving the exchange to spend the current token, then
it exchanges the token to the next token in the list. Finally, it unwraps any
remaining WETH, and transfers a non-zero amount to the block builder and the
message sender. The second strategy implements an arbitrage smart contract

16 Timon Riechsteiner, Supervisor: Arthur Gervais

with the same functionality, with the addition that it leverages a flash loan to
have more funds available for the trades [1].

Mathematical Model To formalise this comparison, the following model can
be used. Let p ∈ P be a call or return operation, and n := |P | the number of
operations. Further, the following notation is used

Contract Deployment Overhead Underlying Cost

doAnything dd od(p)
u(p)

Solidity ds os(p)

Table 2: The notation used for the mathematical model. Each value corresponds
to the gas used by one of the two choices for a contract.

Therefore od(p) + u(p) is the total cost incurred by executing an operation p.
Note that the underlying cost u(p) is independent of the implementation. Using
this model the total cost of the doAnything contract is

Cd(P) = dd +
∑
p∈P

od(p) + u(p)

The same applies for the solidity implementation, with s instead of d as the
subscript. To be able to generalise ôd, ôs and û is used for the measured averages.
Therefore the estimated total cost becomes

Ĉd(n) = dd + n · (ôd + û)

When setting the inequality such that the doAnything contract is more gas
efficient than the solidity implementation and simplifying it, we get the following.

Ĉd(P) < Ĉs(P) (1)

dd + n · (ôd + û) < ds + n · (ôs + û) (2)

dd + n · ôd < ds + n · ôs (3)

Going from equation one to two follows from inserting the definition. Step two
to three from the fact that the underlying cost is implementation independent.

This model allows for both average and case-by-case evaluation based on spe-
cific deployment costs, operation overheads, and expected number of executions.

If both the deployment cost of the doAnything contract dd and the average
operation cost ôd are less than the corresponding values of the solidity implemen-
tation, the doAnything contract is more efficient in any scenario, as the inequality
will always hold.

If dd < ds, but ôd > ôs, i.e. the doAnything contract is cheaper to deploy, but
incurrs a larger overhead than the dedicated Solidity contract, the doAnything

The doAnything Contract 17

contract is more efficient for some operations, but for large enough n, the Solidity
implementation will be favourable.

If the opposite is true, i.e the the deployment cost of the doAnything contract
is higher than the deployment cost of a Solidity contract, but the doAnything
contract is able to execute the operations more efficient, the doAnything contract
will be more efficient for large enough n.

The remaining case is that both the deployment and the cost per operation
of the doAnything contract are higher. In this case, it does not make sense to use
the doAnything contract.

Results The comparison of the doAnything contract versus a dedicated contract
for the previously detailed strategies is detailed in Table 3. The doAnything
contract clearly beats the Solidity implementation in the two tested scenarios.
The improvements are most strongly pronounced in the size of the deployed
bytecode. The size directly correlates with the deployment gas cost, as all the
bytes stored on chain incur gas fees. The average operation overhead improvement
is not as huge, but nevertheless notable.

The smallest improvement of 10% is seen in the flash-loan case, compared to
a 25% improvement in the non-flash-loan case. The flash-loan case has a higher
overhead, as the doAnything contract needs to make the data available inside
the flash-loan callback, which requires additional storing and loading. Despite
this, our contract proves more gas efficient across the board. In both scenarios,
the inequality from the previous section is true for arbitrary n. In other words,
no matter the total number of operations or the number of deployments, it will
always be more efficient to use our doAnything contract than to use the dedicated
Solidity implementation.

Note that this only holds for the two specific tested scenarios. If for example
the strategy would use a fixed number of swaps, instead of iterating over arrays,
the compiler might be able to optimise more, potentially resulting in a lower gas
usage than our approach. Clearly, this needs to be determined on a strategy-to-
strategy basis, which is possible using the supplied model.

4.5 doAnything vs. MEV Bots

Additional evaluation was done by comparing the doAnything execution to a total
of ten transactions of two existing MEV bots that use simliar, ”doAynthing”-
like contracts. The MEV bots considered are MEV Frontrunner Yoink2 and
c0ffeebabe3. To confirm that the operations were indeed encoded in the transaction
invoking the contracts, the following two steps were done. First, we determined
all contract calls performed by their smart contracts to extract MEV. Second,
we confirmed that the targets of the calls, the function signatures and some of
the parameters passed as arguments are contained in the calldata of the MEV
extracting transaction.

2 MEV Frontrunner Yoink: 0xfde0d1...455a
3 C0ffeebabe: 0xc0ffee...9671

https://etherscan.io/address/0xfde0d1575ed8e06fbf36256bcdfa1f359281455a
https://etherscan.io/address/0xc0ffeebabe5d496b2dde509f9fa189c25cf29671

18 Timon Riechsteiner, Supervisor: Arthur Gervais

Strategy Contract Deployed Size di ôi û

non-flash-loan

doAnything 1462 372640 3712
35354

Solidity 4499 1038322 4926

relative usage 32.4% 35.9 % 75.4% -

flash-loan

doAnything 1462 372640 5526
36346

Solidity 6627 1498852 6113

relative usage 22.1% 24.9 % 90.0% -

Table 3: Bytecode size of the deployed contracts and gas usage of the different
scenarios. The bytecode size is given in bytes. The relative usage is the gas used
by the doAnything contract relative to the Solidity implementation.

After having confirmed that the calldata encoded the calls, we replicated
the MEV extraction using our own contract and packing format, on the same
blockchain state that the transactions were included. The MEV bot used by
c0ffeebabe outperformed our method in all five transactions. The average relative
performance (gas used by the doAnything contract divided by the gas used by
the MEV bots) is 113.0% compared to c0ffeebabe, with a standard deviation of
3.0%. The bot used by Yoink only managed to outperform our method in two
out of five transactions that we analysed. The average relative performance is
99.2%, with a standard deviation of 3.7%. See Figure 6 for a detailed overview of
the results.

Fig. 6: The gas used by the doAnything contract versus MEV bots.

The doAnything Contract 19

5 Limitation

While the doAnything contract is able to save gas in some scenarios, and only
incurs minimal overhead in the other scenarios, there are some notable limitations
to it. An individual, pure function call will always be cheaper than using the
doAnything contract. Only in cases where a dedicated smart contract is required
to be able to execute a sequence of calls (and potentially returns) the doAnything
contract might be more gas efficient.

Further, one crucial reason that makes our doAnything contract gas efficient is
that all call- and return-data is determined and packed off-chain. The doAnything
contract only needs to load it in memory and can then proceed to call or return.
A dedicated solidity contract, which is able to execute various calls and returns
based on arguments given to it, usually needs to prepare the data with further
EVM logic. For example it needs to allocate arrays, set element of the arrays,
and potentially needs to copy them around in memory into the right order. Only
then the dedicated contract can proceed to call the target contract. This gives
dedicated implementation a clear disadvantage. However, this also points to a
disadvantage of the doAnything contract. As the data needs to be determined
off-chain, it cannot use data returned from one call as an argument to the next
call, unless the data can be known beforehand.

This is especially limiting as demonstrated in the following example. Let the
most recent block be n. The operator can base its actions only on the state
of the block n. Assume the block builder includes the transaction invoking the
doAnything contract as the i-th transaction in the block n+1, where i > 1. Then,
transactions tj for j < i included in the same block could alter the state such
that the doAnything contracts execution fails.

However, as our first insights into existing ”doAnything ”-like contracts used
by MEV bots have shown, it would be possible to include the ability to use
current, on-chain data for function calls. To which extent this is possible, and
how it could affect the efficiency would be a question for further research.

Even if the limitation of using current, on-chain data for function calls
is circumvented, one limitation would remain. The contract would lack the
functionality to manipulate this data. For example, the current balance b of an
address is queried using a function call. Assume, that the next call needs b

2 as
an argument. To be able to do such calculations, it would require even more
logic and functionality. To provide all this functionality, the solution could be
a simple virtual machine running inside the EVM. We suspect that this would
require a trade-off between functionality and gas efficiency. The feasibility and
gas efficiency of such an implementation has, to our current knowledge, not been
researched.

More potential gas savings could be achieved if there are different, specialised
doAnything contracts for certain use-cases. For example, the preprocessing phase
is only required because some slots need to be stored for external execution
contexts. As it is known beforehand if such a external context will arise in a
sequence of operations, one could use a different doAnything contract that does
not provide this functionality, if no external context will be needed. Then one

20 Timon Riechsteiner, Supervisor: Arthur Gervais

would not need to provide the RETURN slot functionality, and could completely
remove the preprocessing calculations. This would both reduce overhead and
deployment cost relative to the gas used by our doAnything implementation.

6 Conclusion

Despite various limitations, we were able to demonstrate savings or only minimal
overhead in terms of gas usage across various, real-world scenarios. More versatile,
generalised contracts, and the ability to do expensive calculations off-chain, can
potentially change the approach to smart contracts for many different use-cases,
for developers, regular users, more advanced traders and MEV extractors alike.

There is a lot of potential to further improve on the implementation of the
doAnything contract. The fact that it already outperforms dedicated implemen-
tations using Solidity underlines the statement that this topic is worth further
research and development. This paper can serve as a starting point for such
endeavours.

Many smart contracts have existed for some time now. Revisiting their
implementations, applying advanced gas saving strategies, and using low-level
programming languages like Huff could improve on the user-friendliness (in terms
of minimal fees) of existing, established protocols. This would have the benefit
of making a protocol more accessible and enticing compared to its competitors.
Especially in times of high demand for network resources, protocols that are the
most gas-efficient should prove valuable to users.

Further, as we have shown, the doAnything contract is able to compete with
contracts that MEV extractors are using today. Therefore, such an optimised
and versatile smart contract is also useful to more sophisticated actors in the
blockchain space. Extracting value and generating revenue requires agility and
efficiency, two points that the doAnything contract or similar implementations
certainly provide.

Bibliography

[1] Aave.com. Flash Loans. https://docs.aave.com/faq/flash-loans, 2024.
Accessed: 2024-09-13.

[2] Aave.com. Introduction to Aave. https://docs.aave.com/faq, 2024. Ac-
cessed: 2024-09-13.

[3] Allie Grace Garnett. What is ETH Gas? https://www.britannica.com/

money/ethereum-gas-fees-eth, 2024. Accessed: 2024-09-13.
[4] Andreas M Antonopoulos and Gavin Wood. Mastering ethereum: building

smart contracts and dapps. O’reilly Media, 2018.
[5] beaconcha.in. Ethereum Signature Database. https://www.4byte.

directory/, 2024. Accessed: 2024-09-13.
[6] Ethereum Community. Wrapped Ether (WETH). https://ethereum.org/

en/wrapped-eth/, 2022. Accessed: 2024-09-13.
[7] Chris Dannen. Introducing Ethereum and solidity. Springer, 2017.
[8] DefiLlama. Uniswap Protocol. https://defillama.com/protocol/

uniswap#information, 2024. Accessed: 2024-09-13.
[9] Ethereum Community. Blocks. https://ethereum.org/en/developers/

docs/blocks/, 2024. Accessed: 2024-09-13.
[10] Ethereum Foundation. Yul. https://docs.soliditylang.org/en/v0.8.

16/yul.html, 2022. Accessed: 2023-08-22.
[11] Ethereum Foundation. Gas and Fees. https://ethereum.org/en/

developers/docs/gas/, 2024. Accessed: 2024-09-13.
[12] Ethereum Foundation. Run a node. https://ethereum.org/en/

run-a-node/, 2024. Accessed: 2024-09-13.
[13] Ethereum Foundation. Run a Node.

ttps://docs.soliditylang.org/en/develop/, 2024. Accessed: 2024-09-13.
[14] Etherscan. Ethereum Average Gas Price Chart. https://etherscan.io/

chart/gasprice, 2024. Accessed: 2024-09-13.
[15] Etherscan. Ethereum Daily Gas Used Chart. https://etherscan.io/

chart/gasused, 2024. Accessed: 2024-09-13.
[16] Vitalik Buterin Fabian Vogelsteller. ERC-20: Token Standard. https:

//eips.ethereum.org/EIPS/eip-20, 2019. Accessed: 2024-09-13.
[17] Foundry. Introduction to Foundry. https://book.getfoundry.sh/, 2024.

Accessed: 2024-09-13.
[18] P. Hassan, S. De Filippi. Decentralized autonomous organizations. Internet

Policy Review, 10(2), 2021.
[19] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu,

Philip Daian, Dwight Guth, Brandon Moore, Daejun Park, Yi Zhang, Andrei
Stefanescu, et al. Kevm: A complete formal semantics of the ethereum virtual
machine. In 2018 IEEE 31st Computer Security Foundations Symposium
(CSF), pages 204–217. IEEE, 2018.

[20] Huff. Huff by Example. https://docs.huff.sh/get-started/

huff-by-example/#macros, 2024. Accessed: 2024-09-13.

https://docs.aave.com/faq/flash-loans
https://docs.aave.com/faq
https://www.britannica.com/money/ethereum-gas-fees-eth
https://www.britannica.com/money/ethereum-gas-fees-eth
https://www.4byte.directory/
https://www.4byte.directory/
https://ethereum.org/en/wrapped-eth/
https://ethereum.org/en/wrapped-eth/
https://defillama.com/protocol/uniswap#information
https://defillama.com/protocol/uniswap#information
https://ethereum.org/en/developers/docs/blocks/
https://ethereum.org/en/developers/docs/blocks/
https://docs.soliditylang.org/en/v0.8.16/yul.html
https://docs.soliditylang.org/en/v0.8.16/yul.html
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/run-a-node/
https://ethereum.org/en/run-a-node/
https://etherscan.io/chart/gasprice
https://etherscan.io/chart/gasprice
https://etherscan.io/chart/gasused
https://etherscan.io/chart/gasused
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://book.getfoundry.sh/
https://docs.huff.sh/get-started/huff-by-example/#macros
https://docs.huff.sh/get-started/huff-by-example/#macros

22 Timon Riechsteiner, Supervisor: Arthur Gervais

[21] Huff Team. Huff Language Documentation. https://docs.huff.sh/, 2022.
Accessed: 2024-09-13.

[22] smlXL, Inc. Ethereum Virtual Machine Opcodes Interactive Reference.
https://www.evm.codes/, 2024. Accessed: 2024-09-13.

[23] smlXL, Inc. Evm opcodes. hhttps://www.evm.codes/, 2024. Accessed:
2024-09-13.

[24] Solidity Authors. Yul Documentation. https://docs.soliditylang.org/
en/latest/yul.html, 2024. Accessed: 2024-09-13.

[25] Solidity Team. A Closer Look at Via-IR. https://soliditylang.org/

blog/2024/07/12/a-closer-look-at-via-ir/, 2024. Accessed: 2024-09-
13.

[26] Solidity Team. About Solidity Lang. https://soliditylang.org/about/,
2024. Accessed: 2024-09-13.

[27] Solidity Team. Transient Storage Opcodes. https://soliditylang.org/
blog/2024/01/26/transient-storage/, 2024. Accessed: 2024-09-13.

[28] SunWeb3Sec. DefiHackLabs GitHub Repository. https://github.com/

SunWeb3Sec/DeFiHackLabs, 2022. Accessed: 2024-09-13.
[29] Uniswap Labs. The Uniswap Protocol. https://docs.uniswap.org/

concepts/uniswap-protocol, 2024. Accessed: 2024-09-13.
[30] Vyper Team. Vyper overview. https://docs.vyperlang.org/en/stable/

index.html, 2024. Accessed: 2024-09-15.
[31] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper, 151, 2014.

https://docs.huff.sh/
https://www.evm.codes/
hhttps://www.evm.codes/
https://docs.soliditylang.org/en/latest/yul.html
https://docs.soliditylang.org/en/latest/yul.html
https://soliditylang.org/blog/2024/07/12/a-closer-look-at-via-ir/
https://soliditylang.org/blog/2024/07/12/a-closer-look-at-via-ir/
https://soliditylang.org/about/
https://soliditylang.org/blog/2024/01/26/transient-storage/
https://soliditylang.org/blog/2024/01/26/transient-storage/
https://github.com/SunWeb3Sec/DeFiHackLabs
https://github.com/SunWeb3Sec/DeFiHackLabs
https://docs.uniswap.org/concepts/uniswap-protocol
https://docs.uniswap.org/concepts/uniswap-protocol
https://docs.vyperlang.org/en/stable/index.html
https://docs.vyperlang.org/en/stable/index.html

	The doAnything Smart Contract.

